在水泥混凝土结构内所发生的“电化反应”、“氧化反应”、“碱骨料反应”及“酸碱腐蚀反应”过程中,C l-始终对这些危害反应的发生起着“诱导”作用。这种“诱导”作用,主要是由C l-的特性及与它相结合的碱金属、碱土金属离子Mx+所构成的离子化合物M C lx的性质所决定的。
2.影响危害反应的因素
根据氯离子“诱导”水泥混凝土造成的危害反应机理,我们认为影响危害反应的因素主要有以下几方面:
(1)Cl-浓度越高,也就意味着M C lx的含量越大,危害反应越激烈;随着时间的延长,危害的程度也越严重。(2)空气湿度越大或混凝土构件周围环境潮湿,危害反应越易发生,危害性越大。(3)环境温度越高,危害反应加剧,危害的程度加重。(4)时间越长,危害反应持续越久,危害的程度也就逐步扩大。(5)混凝土结构越薄或结构内部的孔隙率越大,危害反应越迅速,危害的程度也越大。(6)处于酸、碱的环境中或存在其他介质侵蚀的情况下,危害反应加快。
(1)水泥中C l-的主要来源水泥中的C l-主要来源于水泥自身(水泥熟料、混合材)和水泥中掺入的外加剂。有人认为水泥自身的C l-主要来源于混合材,其理论根据是因为熟料已经过水泥窑内的高温煅烧,其中C l-已被挥发。针对这一观点,我们将N a C l 在高温炉中进行了灼烧试验:在810℃N a C l 固体开始变成熔融状,840℃全部变为熔融体,在1400℃恒温灼烧30分钟,其损失量只有12.72%。虽然旋窑内最高温可以达到1700℃~1800℃(立窑内最高温度一般为1350℃~1450℃),但它的尾气离开最上端旋风预热筒的温度只有320℃~350℃,而在低端两级旋风预热筒内温度一般为750℃~870℃,并在这两级旋风预热筒内物料易发生粘堵现象,我们认为这与M C lx在该温度范围内变成熔融体,增加了物料的黏度有关。上述情况表明,C l-在熟料煅烧过程中不可能大部分地挥发掉,即使有挥发也只是相对很少的一部分。此外,我们对全国不同地区的多家水泥企业生产的熟料及使用的混合材进行了C l-检测分析,结果显示熟料中C l-为0.011%~0.053%,混合材中C l-为0.005%~0.012%。通过以上分析表明,水泥自身的C l-在一般情况下主要来源于熟料。而除了水泥自身的C l-外,水泥中C l-的另一个主要来源是水泥外加剂。近年来市场上出现了各种类型的助磨剂、增强剂,这些水泥外加剂中含有的C l-应引起水泥企业的高度重视。由于人们普遍缺乏对水泥中C l-含量的危害性认识,以及国家以前没有出台对水泥中C l-要求的标准,导致我国水泥外加剂产业处于鱼目混珠、良莠不齐的无序状态。传统的粉体水泥外加剂主要成分是廉价易得而又具有较好增强效果的N a C l (盐),而这种产品带入水泥中的C l-远远超出水泥国家标准中C l-≤0.06%的要求。